Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
2
2
2
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6. 0 < ||
L1
||
7. 0 < ||
L2
||
8.
x
= last(
L1
)
9.
y
= hd(
L2
)
y
= (
L1
@
L2
)[((||
L1
|| - 1)+1)]
latex
by ((RWO "select_append_back" 0)
CollapseTHEN (Auto'))
latex
C
1
:
C1:
y
=
L2
[(((||
L1
|| - 1)+1) - ||
L1
||)]
C
.
Definitions
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
{
x
:
A
|
B
(
x
)}
,
i
j
<
k
,
P
&
Q
,
x
:
A
B
(
x
)
,
A
B
,
A
,
False
,
P
Q
,
x
:
A
B
(
x
)
,
Void
,
{
i
..
j
}
,
,
t
T
,
hd(
l
)
,
l
[
i
]
,
n
+
m
,
n
-
m
,
#$n
,
last(
L
)
,
a
<
b
,
type
List
,
Type
,
s
=
t
,
||
as
||
,
i
j
Lemmas
iff
wf
,
rev
implies
wf
,
select
append
back
,
le
wf
origin